数据仓库OLAP技术 摘自:http:hi。baidu。comliujian0234051blogiteme72c2fd591865ac750da4ba0。html 2007110111:12 定义 定义1:OLAP(联机分析处理)是针对特定问题的联机数据访问和分析。通过对信息(维数据)的多种可能的观察形式进行快速、稳定一致和交互性的存取,允许管理决策人员对数据进行深入观察。 ?定义2:OLAP(联机分析处理)是使分析人员、管理人员或执行人员能够从多种角度对从原始数据中转化出来的、能够真正为用户所理解的、并真实反映企业维特性的信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。(OLAP委员会的定义) ?OLAP的目标是满足决策支持或多维环境特定的查询和报表需求,它的技术核心是维这个概念,因此OLAP也可以说是多维数据分析工具的集合。 相关概念 ?1多维数据集:多维数据集是联机分析处理(OLAP)中的主要对象,是一项可对数据仓库中的数据进行快速访问的技术。多维数据集是一个数据集合,通常从数据仓库的子集构造,并组织和汇总成一个由一组维度和度量值定义的多维结构。 ?2维度:是多维数据集的结构性特性。它们是事实数据表中用来描述数据的分类的有组织层次结构(级别)。这些分类和级别描述了一些相似的成员集合,用户将基于这些成员集合进行分析。 ?3。度量值:在多维数据集中,度量值是一组值,这些值基于多维数据集的事实数据表中的一列,而且通常为数字。此外,度量值是所分析的多维数据集的中心值。即,度量值是最终用户浏览多维数据集时重点查看的数字数据。您所选择的度量值取决于最终用户所请求的信息类型。一些常见的度量值有sales、cost、expenditures和productioncount等。 ?4元数据:不同OLAP组件中的数据和应用程序的结构模型。元数据描述OLTP数据库中的表、数据仓库和数据集市中的多维数据集这类对象,还记录哪些应用程序引用不同的记录块。 ?5级别:级别是维度层次结构的一个元素。级别描述了数据的层次结构,从数据的最高(汇总程度最大)级别直到最低(最详细)级别。 ?6数据挖掘:数据挖掘使您得以定义包含分组和预测规则的模型,以便应用于关系数据库或多维OLAP数据集中的数据。之后,这些预测模型便可用于自动执行复杂的数据分析,以找出帮助识别新机会并选择有获胜把握的机会的趋势。 ?7多维OLAP(MOLAP):MOLAP存储模式使得分区的聚合和其源数据的复本以多维结构存储在分析服务器计算机上。根据分区聚合的百分比和设计,MOLAP存储模式为达到最快查询响应时间提供了潜在可能性。总而言之,MOLAP更加适合于频繁使用的多维数据集中的分区和对快速查询响应的需要。 ?8关系OLAP(ROLAP):ROLAP存储模式使得分区的聚合存储在关系数据库的表(在分区数据源中指定)中。但是,可为分区数据使用ROLAP存储模式,而不在关系数据库中创建聚合。 ?9混合OLAP(HOLAP):HOLAP存储模式结合了MOLAP和ROLAP二者的特性。 ?10粒度:数据汇总的层次或深度。 ?11聚合聚集:聚合是预先计算好的数据汇总,由于在问题提出之前已经准备了答案,聚合可以改进查询响应时间。 ?12切块:由多个维的多个成员限定的分区数据,称为一个切块。 ?13切片:由一个维的一个成员限定的分区数据,称为一个切片。 ?14数据钻取:最终用户从常规多维数据集、虚拟多维数据集或链接多维数据集中选择单个单元,并从该单元的源数据中检索结果集以获得更详细的信息,这个操作过程就是数据钻取。 ?15数据挖掘模型:数据挖掘使您得以定义包含分组和预测规则的模型,以便应用于关系数据库或多维OLAP数据集中的数据。之后,这些预测模型便可用于自动执行复杂的数据分析,以找出帮助识别新机会并选择有获胜把握的机会的趋势。 OLAP特性 ?(1)快速性:用户对OLAP的快速反应能力有很高的要求。系统应能在5秒内对用户的大部分分析要求做出反应。 ?(2)可分析性:OLAP系统应能处理与应用有关的任何逻辑分析和统计分析。 ?(3)多维性:多维性是OLAP的关键属性。系统必须提供对数据的多维视图和分析,包括对层次维和多重层次维的完全支持 ?(4)信息性:不论数据量有多大,也不管数据存储在何处,OLAP系统应能及时获得信息,并且管理大容量信息。 OLAP多维数据结构 ?1。超立方结构(Hypercube) 超立方结构指用三维或更多的维数来描述一个对象,每个维彼此垂直。数据的测量值发生在维的交叉点上,数据空间的各个部分都有相同的维属性。(收缩超立方结构。这种结构的数据密度更大,数据的维数更少,并可加入额外的分析维)。 ?2。多立方结构(Multicube) 即将超立方结构变为子立方结构。面向某一特定应用对维进行分割,它具有很强的灵活性,提高了数据(特别是稀疏数据)的分析效率。 OLAP多维数据分析 ?1。切片和切块(SliceandDice) 在多维数据结构中,按二维进行切片,按三维进行切块,可得到所需要的数据。如在城市、产品、时间三维立方体中进行切块和切片,可得到各城市、各产品的销售情况。 ?2。钻取(Drill) 钻取包含向下钻取(Drilldown)和向上钻取(Drillup)上卷(Rollup)操作,钻取的深度与维所划分的层次相对应。 ?3。旋转(Rotate)转轴(Pivot) 通过旋转可以得到不同视角的数据。 OLAP体系结构 ?