编辑 有监督机器学习中用到,分类和回归算法 无监督机器学习中用到,聚类和降维算法 编辑 然后再来看一下,机器学习的过程,可以看到,对于回归算法,yaxb而言: 这里,输入历史数据x,然后进行训练,这个训练指的就是,首先a,b输入一组随机的初始值,或者经过人为评估的初始值,然后,根据输入的数据x得到yhat,然后用yhat和y也就是预测值和真实值,取到 ebuselo随机误差项,然后根据这个误差项再去调整,a,b的值,继续循环获取误差项,让这个误差项变小,直到不变。。。,这里调整a,b的值的过程叫做训练。 然后a,b叫做参数,也叫做模型, 然后预测指的是yhaty估计也叫y预测值。 编辑 应用领域。系统做浅了,可以直接实现功能,但要想功能更加符合人类思维,更好用,体验更好,那么最终 研究深入了,都需要用到机器学习,深度学习。 编辑 我们这里说的人工智能攻城狮,有3个级别,初级,就是利用一些现有的算法,做处理一下数据,中级就是对算法用到很熟练,高级可能就需要去分析论文,然后应用算法到实际应用中,这个是比较难的,对能力要求高,到达研究的程度,做到这一步,一般学历也要跟得上,博士之类的级别。 一般在公司里,可能就是需要用爬虫获取数据,然后用机器学习算法,对数据进行分类,或者分析等, 这种简单的机器学习应用,比较广泛,不是说多难,但是应用比较广泛。 然后自然语言处理里,有,情感分析,比如说一句话给出这句话是正面的,还是负面的,文本分类,还有论文查重。。等。 编辑 编辑 在预赛的时候就可以把各个球队的排名预测出来,赌球还不得发了。。。 编辑 另外网易和新浪也都有自己的机器人。大厂都会搞这些。 编辑 微软自己的深度学习框架是,CNJK百度是paddlepaddle飞桨 编辑 MIT一般指麻省理工学院。麻省理工学院(MassachusettsInstituteofTechnology),简称麻省理工(MIT),位于美国马萨诸塞州波士顿都市区剑桥市,主校区依查尔斯河而建,是一所私立研究型大学,爱国者联盟附属成员,全球大学校长论坛成员 编辑 机器学习中的一些框架。 编辑 用到人工神经网络算法的机器学习叫做深度学习。 编辑 人工智能作用 编辑然后有个电影,可以去看看,模仿游戏,讲了人工智能的诞生之类的,可以帮助理解人工智能, 图灵,死的很传奇,咬一口苹果里面有氯化钠。。。 编辑 然后来看回归,我们说y的范围是无穷到无穷,然后yaxb这里其实,我们就是要找到规律, y大一点的时候,x是小一点还是怎么样,找到这个规律其实就是要,找到正确的a和b也就是找到正确的模型。 编辑 这里yaxb次方这个就不叫线性回归,因为它不是一个直线而是一个向上的弯曲线,除非,b等于1的时候,这个时候是线性的 对于yabx这是一元一次方程。叫做简单回归。 编辑 可以看到实际上对于yaxb来说,只需要两组x,y的值就可以求出a,b了, 如果我给出四组x,y的值就能求出两组a,b的值,。。当然给的越多求出来就约到, 最后就要找到误差最小,最合适的那个a,b来用。 编辑 我们要做的就是用最快的速度的算法,找到误差最小的最优解 编辑 来看一下这个,可以看到在这个yaxb这个公式中,我们可以把很多个x,y,带入公式以后,然后得到很多个a,b,而上面的黑点就是我们真实的数据,那么我们其实就是要找到一条直线,这条直线可以尽可能的穿过所有的真实的历史数据,当然这是不可能的,因为数据本身是散乱的,但是我们要尽可能 找到这样一条直线,也就是确定,最优解,a,b模型。 那么这个尽可能怎么做呢? 编辑 尽可能的意思就是,我们要让真实值,要尽可能的贴近预测值,当然我们说通过调整预测值来实现的,表现在上图中其实就是,predictedvalue这个预测值,也就是我们说的yhaty帽y估计或者叫y预测,也就是那个直线上的值,这个值呢,和真实的y值,也就是那个函数的结果y,他们的差的绝对值,也就是ebuselo让这个值,随机误差,越来越小。。。那么这个误差怎么算呢? 其实就是:我们让 yhat1y1yhat2y2。。。一直加,那么我们说就是从,第一个值开始到第m个值 然后,再去取平均值,也就是是一个求和符号,英语名称:sigma,汉语名称:西格玛 yhaty2m当然,这里要从1到m,太难打了,数学符号打不出来,明白就可以了。 这个公式得到的误差就是整体误差。。。我们要让这个误差最小就可以了。。。最接近0的时候,那么 就可以保证让真实值,大部分落到我们的预测线上。 至于为什么我们要取yhaty绝对值所有加和的平方,而不是3次方,4次方。。后面我们会详细讲解。